
Production Scheduling in

Almost Continuous Time
�

Kevin R. Gue

George L. Nemhauser

School of Industrial & Systems Engineering

Georgia Institute of Technology

Mario Padron

AT&T Bell Laboratories

September 13, 1995

Abstract

We present a large scale production scheduling problem where each

order is unique and the processing time for an operation can be close to

the size of a time period. Because modeling the problem as a multipro-

cessor owshop results in a computationally intractable formulation,

we cast the problem in production planning terms and extract a pro-

duction schedule from the solution. To solve our model, we introduce

the notion of \almost continuous time" and show how to obtain good

solutions to large problems e�ciently.

1 Introduction

Production planning is a pivotal task for manufacturers in today's compet-
itive marketplace. E�ective production planning reduces labor and work-
in-process inventory costs, lowers production costs by minimizing machine

�This research was supported by AT&T and NSF Grant DDM-9115768 to the Georgia

Institute of Technology.

1



idle time, and increases the number of on-time job deliveries. Many of these
planning problems are quite large, however, forcing �rms to use techniques
that o�er little in the way of process optimization.

Our problem has characteristics of both production planning and owshop
scheduling, but standard approaches to both are unsatisfactory for it. Our
remedy is to use appropriate elements of production planning and owshop
scheduling models to achieve good solutions.

Classical owshop scheduling sequences a set of jobs on multiplemachines
such that each job is processed through the same order of machines. Machines
may process only one job at a time and no job may be preempted. These
problems are quite di�cult to solve, except for the two machine case which is
solved optimally using Johnson's rule. Problems with three or more machines
are known to be NP-Hard [4].

Multiprocessor owshop scheduling (MFS) is the more general problem
that allows each processing stage to include a set of identical machines. Jobs
must be scheduled on one machine in each stage. Typical objectives are to
minimize the completion time of the last job or the number of late jobs.
These problems are encountered in a variety of real world applications in
manufacturing and other �elds, but even small problems are di�cult to solve
optimally.

As in the area of owshop scheduling, progress in algorithm development
for MFS is constrained by its strongly NP-Hard complexity classi�cation. All
but the smallest problems are solved by heuristic methods. Unfortunately,
many of the applications of this problem involve large numbers of jobs and
machines. For example, our application has hundreds of jobs and dozens of
machines.

Brah and Hunsucker [2] and Hariri and Potts [5] give branch-and-bound
algorithms for MFS. They solve problems of up to 25 jobs and several ma-
chines. Heuristic methods for larger problems have also been proposed.
Sriskandarajah and Sethi [10] give average and worst case results for several
heuristics. Each of the heuristics reviewed addresses the problem of mini-
mizing makespan. Wittrock [14] solves the multiprocessor owshop problem
with the objective of minimizing both makespan and bu�er queue lengths.

Unlike combinatorial scheduling, production planning is mainly concerned
with how much of a product to make in each time period to meet a set of
demands. Planners must minimize work-in-process inventory and setup time
delays while still meeting demand in each period. There is an extensive

2



literature on production planning problems; see Nam and Logendran [7] for
a survey.

Billington, McClain and Thomas [1] give a mathematical programming
formulation of the capacity constrained MRP system. Padron [9] solves a lin-
ear programming formulation of the capacity constrained multi-item, multi-
stage production scheduling problem and compares the results with those he
obtains with a more e�cient decomposition procedure. His formulation is an
alternative to MRP II methods for solving production scheduling problems
and is similar in concept to the model we present. However, orders in MRP
problems are typically for many units of a given product and the processing
time of a unit is small with respect to a time period.

Among owshop production problems, Chang and Liao [3] address the
production scheduling of several part types through a multiprocessor ow-
shop. Using a Lagrangian relaxation and decomposition algorithm, they give
a production plan for each part type to meet a set of demands. Their prob-
lem di�ers from others in that they do not schedule each machine, but each
machine group. Luh and Hoitomt [6] use a Lagrangian relaxation decom-
position scheme to solve large scale production scheduling problems with
capacity constraints. Their technique, which employs a heuristic to meet
capacity constraints, appears to yield good solutions while also providing
a lower bound on the optimal objective function value. They observe that
their method may not be suitable for problems with jobs requiring many
operations on multiple machines.

Wein and Chevalier [12] discuss the relationships among sequencing, set-
ting due-dates, and releasing jobs to the shop oor, and show how these
decisions a�ect a job's due-date lead time (due-date minus arrival time) and
tardiness. These issues are especially relevant to our application. The au-
thors apply a two-step job release and priority sequencing policy to a two
machine job shop, and compare their results with due-date policies.

The problem we address is a mixture of the MFS and production plan-
ning problems. It is like the MFS problem in that each production stage
has several machines and can process many jobs at a time. Also, each job
has an associated due date and set of processing times. Unlike the MFS
problem, however, we do not seek an assignment of jobs to individual ma-
chines. Rather, we want to know only what jobs should be done in which
stages for every time period to minimize the number of late jobs. Also like
production planning models, our model seeks to minimize work-in-process

3



inventory costs.
We make a twofold contribution in this paper. First, we give a method for

modeling and solving this hybrid production planning{owshop scheduling
problem. We show how to use our model to solve large real world problems in
a reasonable amount of time. Second, we introduce to production scheduling
a way to express \almost continuous time" in multi-period models through
the use of special ordered sets type 2 (S2 sets), a technique used in integer
programming to model piecewise linear functions. By almost continuous time
we mean a compromise between discrete time where jobs are assigned to time
periods and continuous time where a job can start at any instant.

We give the problem setting in Section 2. In Section 3 we present the
model, give the formulation and discuss the use of S2 sets. Section 4 gives
di�erent solution methods and a set of example problems run on actual plant
data. We conclude by discussing implementation issues.

2 Problem setting

The factory makes individual products by varying a number of product pa-
rameters to meet customer speci�cations. Since each order is unique, no
products are made for inventory|all are made to order. Several hundred
products are made each week, each having a due date that can vary from
a few days to a few months in the future. Management must continually
determine which orders to work in each production stage to provide the best
service to its customers.

Each product goes through a series of production stages, where a stage
consists of a number of identical parallel machines, as in Figure 1. Each stage
performs only one operation on a job, although in some stages the nature
of the product allows more than one machine in a stage to work the job
simultaneously. A given job need not be worked in every stage, but all jobs
follow the same relative sequence of machines. Some of the stages involve
product testing, which results in rework for those products failing a test.

Production time in each stage varies by order, depending on parameters
speci�ed by the customer. Moreover, each order consumes a di�erent amount
of stage capacity, again depending on the parameters. Varying production
times, stage capacities, the possibility of rework, and tight due dates produce
a very di�cult scheduling environment.

4



��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��

---

Machines

Stage 4Stage 3Stage 2Stage 1

Figure 1: The production process

3 A production scheduling model

Within each stage there are scheduling issues that make formulating the
entire problem very di�cult. Even with an accurate formulation, the model's
size would preclude solution. For these reasons we approach the problem from
a slightly higher level, using aggregation in two areas.

First, we aggregate machines within a stage. Detailed sequencing and
assignment issues within a stage, such as setup times, are left to supervisors
or to other scheduling models. In our model, the capacity of a stage reects
the number and capabilities of the machines in that stage. The allocation of
a job to a stage is only limited by stage capacity and the requirement that
all earlier stages have been completed.

Next, we aggregate in time by creating time periods. Instead of specify-
ing exact starting times for each job through its series of stages, we merely
identify the time period in which to start the job in each stage. We make
each period large enough with respect to job processing time that most jobs
can be wholly done in each stage in one time period. However, we do not
restrict the job to be completed in the time period in which it was started.
So long as it is not interrupted, a job may be processed over two adjacent
periods. We call this approach almost continuous time.

De�nition A schedule satis�es almost continuous time when any operation

started in time period t �nishes in period t or t+ 1.

5



Job (i) xi1 xi2

1 1.0 0
2 1.0 0
3 1.0 0
4 0.4 0.6
5 0.1 0.9

Table 1: Example solution

In other words, we allow some jobs to \spill over" into the next time
period if there is insu�cient capacity to complete them in the current one.
This allows a stage to start a job toward the end of a period, even if it cannot
complete the job in that time period.

We use the term \almost continuous time" because solutions, while not
spelling out starting times for jobs, do provide a sense of order in time.
Table 1 gives a small example that we interpret as follows. Let xit be the
fraction of job i done in period t. In period 1, jobs 1-3 should be started �rst
(simultaneously if there are 3 machines). When the �rst of them is done,
job 4 starts since it should be 40% complete by the end of the period. Job 5
starts on the next available machine. Jobs 4 and 5 �nish in period 2.

We have chosen this approach because neither continuous time models
nor discrete models are suitable for our application. Selecting exact starting
times for each job in a stage would lead to a computationally intractable
formulation. Traditional multi-period models are not suitable for di�erent
reasons, depending on the size of the time period. If time periods are small,
such that a job takes several periods in each stage, the number of variables
tends to be too large. If the time period is larger, such that jobs are wholly
done within a period, stages will be made arti�cially idle whenever there is
insu�cient time to complete another job. Also, completed jobs will be made
to wait until the next time period before proceeding to the next stage.

3.1 Aggregation Issues

There are some important consequences of aggregating with respect to ma-
chines and time. We present these in order to expose the limitations and
proper application of our model.

6



Processing times and period length Our model is most useful when
the processing times of jobs are close to the length of a time period. If the
processing times are too small, jobs will be arti�cially made to wait until
the next time period before moving to the next stage. If processing times
are too large, our model of almost continuous time becomes invalid. This
characteristic of the model means that it is most e�ective when processing
times for di�erent stages are more or less uniform.

Stage capacity To determine the capacity of each stage we compute the
total processing time of all machines in a stage. For example, if a stage
has 5 machines and a period is 8 hours, we give that stage a capacity of
40 machine-hours. If we process 5 jobs, each taking 8 hours of processing
time, the assumption is valid. If we assign 8 jobs that take 5 hours each,
the model would view this as a valid assignment also. However, since we
cannot preempt a job, and for this example we can only do a job on one
machine at a time, the assignment is not feasible. In particular, three jobs
will require 2 hours of processing in the next time period. In our application,
if scheduling does not work out \exactly," we rely on a run of the model in
the next time period to correct the discrepancies.

Time and machine-time Because of the way we compute stage capac-
ity, a job may take more time to complete than there is time in a period.
This highlights the di�erence between real time and our measure of capac-
ity, machine-time. In the above example, the model could assign a job that
consumes 12 machine-hours on one machine, even though the time period is
only 8 hours long, since stage capacity is 40 machine hours. In our applica-
tion, however, a single time period (usually an 8 hour shift) is su�cient to
complete nearly all of the jobs.

3.2 Formulation

We use the following notation:

I = set of all jobs

Ij = set of jobs to be scheduled in stage j

Ji = ordered set of stages required by job i

7



j?i = the last stage required for job i

T = number of time periods

xijt = fraction of job i started in stage j during period t

wijt = fraction of job i completed through stage j in period t

and held as work-in-process in stage j until period t+ 1.

aij = amount of stage j used by job i (in machine-time)

bj = capacity of stage j

di = due period of job i

uit = fraction of job i overdue in period t

�it = penalty constant for lateness of job i in period t

�ijt = penalty constant for work-in-process of job i in stage j in

period t.

Sij = fwij0; xij0; xij1; : : : ; xijTg; an ordered set.

Our formulation, similar to production planning models, includes mate-
rial balance constraints and machine capacities. In addition to minimizing
the lateness of jobs, we seek to minimize work-in-process inventory costs.
The former satis�es customers, while the latter reduces production costs and
congestion on the shop oor. We also impose a lead time of one period on
the production in a period, meaning the fraction xijt started in period t will
not be available until period t+ 1.

The formulation is

Minimize
X

i2I

TX

t=di+1

�ituit +
X

i2I

X

j2Ji

diX

t=1

�ijtwijt

wij;t�1 + xij;t�1 � xi;j+1;t � wijt = 0 8 i; j 2 fJi n j
?
i g;

t = 1; : : : ; T � 1
(1)

wij?
i
;t�1 + xij?

i
;t�1 � wij?

i
t = 0 8 i; t = 1; : : : ; di � 1 (2)

wij?
i
;di�1 + xij?

i
;di�1 + uidi = 1 8 i (3)

�ui;t�1 + xij?
i
;t�1 + uit = 0 8 i; t = di + 1; : : : ; T (4)
X

i2Ij

aijxijt � bj 8 j; t = 1; : : : ; T � 1 (5)

8



wij0 +
T�1X

t=0

xijt = 1 8 i; j 2 Ji (6)

0 � wijt; xijt � 1 8 i; j 2 Ji;

t = 0; : : : ; T � 1

(7)

0 � uit � 1 8 i; t = di; : : : ; T (8)

Sij satis�es almost continuous time 8 i; j 2 Ji; (9)

where wij0 and xij0 are given, for all i and j.

The �rst term in the objective function penalizes the late completion of

a job through the weighted sum of lateness variables. The variable uit does
not exactly count the number of periods job i is overdue, because doing this
would require integer variables. Rather, it indicates the amount of job i left
undone in each period after its due period. The second term penalizes work-
in-process inventory for all periods through the due period. Note that the
work-in-process could be in the form of a job �nished before its due period,

i.e. wij?
i
t = 1 for t < di. The second term, therefore, causes jobs to start as

late as possible and, once started, to �nish as quickly as possible. This is in
keeping with the factory's inventory reduction goals.

Equation 1 is similar to a material balance constraint of standard produc-
tion planning models, and is the key to understanding our model. For the

purpose of explanation, de�ne a new variable yijt to be the fraction of job i

available in stage j in period t. The fraction yijt is composed of the fraction
that was held as work-in-process through period t� 1, plus the fraction that
was started in period t � 1 and became available in period t (lead time is
one period). This gives the equation yijt = wij;t�1 + xij;t�1. But saying that

yijt is available means we must decide whether to start processing it in the

next stage, to hold it through the period as work-in-process, or to divide it
and do both (see �gure 2). This leads to the equation yijt = xi;j+1;t + wijt.
Combining these two equations gives equation 1.

For the equation corresponding to t = 1, wij0 refers to the fraction of

job i already completed in stage j and ready to move on at the beginning
of solution time|it is analogous to initial inventory. The term xij0 refers to

the fraction of job i actually being processed in stage j at the beginning of
solution time.

Equation 2 is the same constraint for the last stage, in all time periods

before the due period di. It prohibits the movement of a job to a nonexistent

9



Stage j+1

Stage j

Period t-1 Period t

wij;t�1

xij;t�1

wijt

yijt

xi;j+1;t

Figure 2: The model's material balance.

10



Period

Job ai 1 2 3

1 0.4 0.5 0.5

2 0.8 1.0

3 1.0 1.0

Table 2: xit values violating almost continuous time

\next stage." Equation 3 introduces the lateness variable uit and is written
for the due period only. This constraint forces uit to take a positive value if
job i is overdue and left undone in period di. Equation 4 forces uit to take a

positive value for every time period after di for which the job is left undone.
Constraint 5 is the capacity constraint for each stage in each time period, and
equation 6 ensures that each job is done in the required stages. Condition 9
forces completion of a job in two periods once it starts in a stage.

To illustrate the importance of condition 9 we give a small example in

Table 2. Consider the processing of 3 jobs on a machine in three time peri-
ods. Without condition 9, the solution is feasible, even though job 1 is split
across periods 1 and 3. Job 3, which we assume was not available on this
machine in period 1, preempts job 1 because it is more urgent. This leaves
the remainder of job 1 to start in period 3. This solution is not acceptable

for our application. A feasible solution is to start all of job 1 in period 3,
leaving the machine idle for a small part of period 1.

3.3 S2 sets

An ordered set of decision variables meeting condition 9 is called a special

ordered set type 2 (S2 set) and satis�es the following conditions.

� No more than two variables in the set are positive.

� If two variables in the set are positive, they are adjacent in the order.

� The sum of all variables in the set equals one.

S2 sets are commonly used to model nonlinear functions by piecewise linear
approximation (see Tomlin [11] for an example), but they also provide a

11



Problem

1 2 3 4 5 6 7 8 9

Jobs 42 51 64 86 127 134 255 333 402

Stages 7 7 7 7 7 7 7 7 7

Periods 12 12 12 12 15 15 17 25 25

S2 sets 145 177 223 294 441 374 886 841 1123

xijt variables 3071 3725 4700 6223 12425 11389 29201 48877 62975
Constraints 1655 1964 2435 3193 6315 6157 14638 25882 32808

Table 3: Description of test problems

natural way to enforce continuity of operations in production problems, where
order is with respect to time.

Note that our model without condition 9 is a linear program and is readily

solved using standard codes. Enforcing S2 sets can be done using branch-
and-bound as we show in the next section.

4 Solution Methods

We provide three solution strategies for use in di�erent contexts. First we
give a branch and bound algorithm to solve the complete problem with all
S2 sets de�ned. Next we relax the S2 sets to require almost continuous time
only over the �rst period. This provides a way to solve larger problems while
still retaining a clear implementation strategy. Finally we present solutions

to the problem without de�ning S2 sets and show that these solutions are
surprisingly easy to implement.

We solved a set of nine test problems using actual plant data. We altered

the number of jobs and the machine capacities to demonstrate performance
over a variety of problem sizes. Table 3 gives a summary of the problems.

For all of the test problems we set xij0 = 0, since xij0 > 0 would mean
xij1 = 1 � xij0, and we could �x all the variables in that S2 set.

We solved our problems using MINTO, a Mixed INTeger Optimizer [8],
running CPLEX 2.1 as the LP solver. We ran the algorithms on an IBM

RISC 6000/550.

12



4.1 Branch and bound

An S2 violation exists if there is any fractional xijt that does not have an

adjacent variable xij;t�1 or xij;t+1 equal to (1 � xijt). Suppose a set Sij has

an S2 violation and let xijk be the �rst violating fractional variable (i.e. the

lowest k) in the set. We branch using the following equalities:

Branch 1

kX

t=1

xijt = 0

Branch 2

TX

t=k+2

xijt = 0

The S2 violation is cut o� in both branches. Branch 1 cuts o� the solution
since xijk is positive, and branch 2 cuts it o� since xijk+xij;k+1 < 1 (otherwise
Sij would not have contained a violation).

We use this approach, but in addition use our knowledge of the prob-
lem environment to judiciously choose i and j. Before giving the branching

scheme we make the following observation:

Observation Fractional variables tend to occur in groups. That is, when

a job is done in di�erent periods in one stage, it usually does its remaining

operations split over di�erent periods as well.

Close inspection of the constraint sets tells why this is so. Our constraints
do not allow the model to do more than one \unit" of a job in any time
period, regardless of which stage(s) does the processing. This restriction
tends to \propagate" fractional variables in later stages when the variables

take fractional values in an early stage (usually due to capacity shortage in a

stage). Furthermore, the propagated fractions tend to take the same values,

that is, a 60/40% split in periods 2 and 3 frequently precedes a 60/40% split
in periods 3 and 4 in the next stage, etc. Our observation applies to S2 sets

with violations as well as those without. Thus the propagated fractions could
easily be 60/40% in periods 2 and 5, 60/40% in periods 3 and 6, and so on.

The observation also implies that correcting an early S2 violation will

tend to correct other violations as well|the correction will be propagated.

This leads to a branching rule that corrects early S2 violations (with respect

to stages) before late ones. The key to our branching strategy lies in a proper

13



Problem

4 5 6

Rule 1 2 1 2 1 2

Nodes 147 1 13 53 2669 1

CPU sec 92 1 44 75 3951 1

Table 4: Comparison of two branching rules.

sort of the S2 sets. To take advantage of the observation we �rst sort the

S2 sets by stage. After this is done we sort the sets again, this time by �rst
stage (that stage that must process a job �rst) within each stage. This way,
we examine S2 sets in earlier stages �rst, and among the jobs in a stage, we
examine those that are there earlier in time before those that are there later.
For example, the set Si1j comes before Si2;j+1 in the �rst sort. However, Si1j

would come after Si2;j if i2's �rst stage is j and i1's �rst stage is j � 1.
Computational results indicate that branching order is important for large

problems. Table 4 compares our branching strategy (Rule 1) with a \benign"
one (Rule 2) on the largest problems solved to satisfy S2 conditions. For these
runs, Rule 2 searches through S2 sets in an order speci�ed only by the data
input �le. In this case we arranged jobs by number of stages left to process.

For example, a job with only one stage remaining was considered before a
job with three stages remaining. In this table, 1 means the algorithm ran
for over two hours without �nding a feasible solution. The number of nodes
indicates how many linear programs the algorithm solved during branch-and-
bound. The results indicate the superiority of Rule 1.

4.2 Almost S2

In practice, we only need to know job assignments for the next time period,
since the model will be run again after the period is over. This allows us

to solve larger problems by ignoring S2 violations after, say, period 2 and

working simply on \cleaning up" periods 1 and 2. Cleaning up the �rst two
periods resolves any ambiguities in implementing the solution for the �rst
period, and we ignore those in later periods.

Our branching scheme is the same as before except that we only correct

violations that start in period 1. Thus if xij1 is fractional and xij2 < 1�xij1,

14



Problem

1 2 3 4 5 6 7 8 9

S2 sets 145 177 223 294 441 374 886 841 1123

CPU sec (LP) 1 1 3 4 12 14 83 373 814
Fractional Sets 30 32 60 67 59 90 151 155 246

Per. 1 violations 1 0 0 1 0 2 2 3 4

Total violations 6 0 3 13 15 15 46 65 75

CPU sec (Almost S2) 4 3 5 10 30 59 3943 1818

Nodes in B-B tree 5 1 1 5 1 15 1437 119

Fractional sets 33 32 55 65 64 88 145 159
Total Violations 4 0 4 12 22 10 38 65

CPU sec (Full S2) 7 3 15 92 44 3951
Nodes in B-B tree 17 1 23 147 13 2669
Fractional sets 30 32 54 74 78 109

Table 5: Computational results for the test problems.

the branches are

Branch 1 xij1 = 0

Branch 2

TX

t=3

xijt = 0:

4.3 LP solutions

At �rst glance it is not clear what solutions to the LP relaxation might

look like. Highly fractional solutions, with fractional variables distributed
throughout time are of little use. Surprisingly, solutions to the LP relaxation

have quite a bit of structure and can be readily implemented. The �rst set of

rows in Table 5 shows the number of S2 sets with fractions, the number with
period 1 violations, and the total number of violations in the LP solutions

to our test problems.
The high percentage of integer values in these solutions makes implemen-

tation possible. For these variables there is no ambiguity concerning the
model's assignments. We can easily interpret those fractional variables in

sets that satisfy the S2 set criteria. The only di�culty is interpreting those

fractional variables that violate S2 requirements.

15



One implementation scheme is the following. For a given stage the solu-

tion to the LP relaxation gives a number of jobs that are to be completely

worked in period 1 (xij1 = 1). We do this set of jobs �rst, and among them,

we give priority to those done in the next stage in period 2. Next we do

those jobs with xij1 > 0 and satisfying S2 conditions, followed by those not

satisfying the S2 conditions.

Table 5 gives the computational results for all problems and solution tech-

niques. A missing data entry indicates that CPU time would be more than

one hour for that problem and solution technique. Note how few period 1

violations occur in even the largest problems. This characteristic of LP solu-
tions allows us to solve large \almost S2" problems using branch-and-bound.
Also, resolving period 1 violations does not necessarily reduce the number of
fractional S2 sets, as seen in problems 3, 5, and 8, implying that resolving

some violations creates others. Finally, we note that LP solutions have rel-
atively few S2 violations|fewer than 8% of all S2 sets in each test problem
contain violations.

It is interesting to ask why the LP solutions have such nice structure.
Consider the recursion given by equation 1 for some 1 � t � T . We have

wijt = wij;t�1 + xij;t�1 � xi;j+1;t

= (wij;t�2 + xij;t�2 � xi;j+1;t�1) + xij;t�1 � xi;j+1;t

= wij;t�3 +
3X

k=1

xij;t�k �

2X

k=0

xi;j+1;t�k

...

= wij0 +
tX

k=1

xij;t�k �

t�1X

k=0

xi;j+1;t�k

= wij0 +
t�1X

k=0

xijk �

tX

k=1

xi;j+1;k

But wijt � 0 gives the sequencing inequality

tX

k=1

xi;j+1;k � wij0 +
t�1X

k=0

xijk

This inequality says that the amount of a job started in a stage through

period t can be no more than that amount started in the previous stage

16



through period t � 1. It is analogous to a family of cuts given by Wilson

[13], but is not written explicitly in our model since the material balance

equations already embody these cuts. These inequalities provide an ordering

on the variables in time that is close to the S2 sets condition and explains

the nice structure of LP solutions.

Formulating our problem in a di�erent way, without these sequencing

inequalities, con�rms their importance. Solutions to this formulation are

extremely fractional and di�cult to interpret.

4.4 Implementation

We can run the model using any of the three solution strategies, depending
on the user's requirements. If the problem is not too large, we run the

full S2 branching to obtain the most unquali�ed solution. We can solve a
larger problem using almost S2 branching and achieve a clear implementation
for the current period. We solve larger problems as linear programs, and
interpret the solution using a method such as that given in Section 4.3.

We use our model on a rolling horizon basis, scheduling all jobs to com-

pletion on each run. A run begins with a snapshot of jobs in progress to
determine the wij0's and schedules each job through its remaining stages.
During a shift however, new orders arrive, jobs may fail inspections, and ma-
chines may breakdown, making frequent runs of the model necessary. This
is especially true when new orders have demanding due dates. A fresh run

of the model can push lower priority or ahead of schedule jobs aside to make
room for the more urgent work.

Our model serves two purposes. First, it determines which jobs to work

in which stages on the current shift. For each area the model provides a list
of jobs to complete and a list of jobs to start in the current shift. These lists

can be used directly by shop oor supervisors, or as input to more detailed
sequencing models.

Second, management can use the model to evaluate shop oor decision
making. When a job is not �nished in accordance with the model solu-

tion, management can investigate the reasons behind the schedule alteration

(\We couldn't process that many jobs in our stage in one shift") and sug-

gest changes to the model (reduce the capacity of that stage) or change

operational procedures to function according to the model. This enables
management to �ne tune the model and their operations over time.

17



Our model is limited by the continuous processing of a job in a stage

in at most two periods. However, we can accommodate the uninterrupted

processing of a job over several periods by generating new branching rules.

Finally, we observe that our model of almost continuous time can be

applied to jobshop scheduling simply by specifying the appropriate machine

sequence for each job.

References

[1] Billington, P.J., McClain, J.O. and Thomas, J.L., \Mathematical Pro-
gramming Approaches to Capacity-Constrained MRP Systems: Review,
Formulation and Problem Reduction," Management Science 29, 1126-

1141 (1983).

[2] Brah, S.A., and Hunsucker, J.L., \Branch and bound algorithm for the

ow shop with multiple processors," European Journal of Operational

Research 51, 88-99 (1991).

[3] Chang, S.C., and Liao, D.Y., \Scheduling exible ow shops with no

setup e�ects," Proceedings{IEEE International Conference on Robotics

and Automation, 1179-1184 (1992).

[4] Garey, M.R., and Johnson, D.S., and Sethi, R., \The complexity of

owshop and jobshop scheduling," Mathematics of Operations Research

1, 117-129 (1976).

[5] Hariri, A.M.A., and Potts, C.N., \Branch and bound algorithm to min-
imize the number of late jobs in a permutation ow-shop," European

Journal of Operational Research 38, 228-237 (1989).

[6] Luh, P.B., and Hoitomt, D.J., \Scheduling of Manufacturing Systems

Using the Lagrangian Relaxation Technique," IEEE Transactions on

Automatic Control 38, 1066-1079 (1993).

[7] Nam, S., and Logendran, R., \Aggregate production planning { a sur-
vey of models and methodologies," European Journal of Operational

Research 61, 225-272 (1992).

18



[8] Nemhauser, G.L., Savelsbergh, M.W.P., and Sigismondi, G.C.,

\MINTO, a Mixed INTeger Optimizer," Operations Research Letters

15, 47-58 (1994).

[9] Padron, M., \A Linear Programming Solution to the Capacity-

Constrained MRP Problem," Proceedings{International Industrial En-

gineering Conference, 495-499 (1987).

[10] Sriskandarajah, C., and Sethi, S.P., \Scheduling algorithms for exible

owshops: Worst and average case performance," European Journal of

Operational Research 43, 143-160 (1989).

[11] Tomlin, J.A., \Special ordered sets and an application to gas supply

operations planning," Mathematical Programming 42, 69-84 (1988).

[12] Wein, L.M., and Chevalier, P.B., \A broader view of the job-shop

scheduling problem," Management Science 38, 1018-1033 (1992).

[13] Wilson, J.M., \Generating cuts in integer programming with families
of special ordered sets," European Journal of Operational Research 46,

101-108 (1990).

[14] Wittrock, R.J., \An adaptable scheduling algorithm for exible ow-
lines," Operations Research 36, 445-453 (1988).

19


